

International Journal of Innovative Computing Journal Homepage: http://se.cs.utm.my/ijic

Development of Breast Cancer Ontology Based on Hybrid Approach

Fatimatufaridah Jusoh Universiti Teknologi Malaysia Johor Bahru, Johor, Malaysia efaridah88@gmail.com

Mohd Shahizan Othman Universiti Teknologi Malaysia Johor Bahru, Johor, Malaysia shahizan@utm.my

Abstract— Cancer can be defined as uncontrolled growth of the cells in the human body and can cause in death if the spread is uncontrollable. As the huge amount of breast cancer data available, the integration of data from difference sources becomes one of the challenges in healthcare. The increasing number of data will make the data disorganised, hard to acquire information and share knowledge from a huge database. In recent years, ontology has become more visible within healthcare area. Ontology is a new method designed to improve data integration in a complex database. Ontology integrates and extracts the data from difference sources. There are three ontology methods for data integration, which are single ontology method, multi-ontology method and hybrid ontology method. Hybrid ontology method is a better method as compared to single ontology and multi-ontology. Therefore, this study focused on data integration based on hybrid ontology approach for breast cancer.

Keywords — Hybrid ontology, Data Integration, Breast Cancer

I. INTRODUCTION

As we know, breast cancer is a main cause of mortality in the world. Cancer is an uncontrolled cell growth in human

Roliana Ibrahim Universiti Teknologi Malaysia Johor Bahru, Johor, Malaysia roliana@utm.my

Norshafarina Omar Universiti Teknologi Malaysia Johor Bahru, Johor, Malaysia shaf.s202@gmail.com

body. Breast cancer forms in tissues of the breast, usually the ducts (tubes that carry milk to the nipple) and lobules (glands that make milk) (MedicineNet, 2011). It may also occur in other areas of the breast. Breast cancer occurs in both men and women, although the breast cancer cases on male are rare. Figure 1 show the percentage for ten cancers that are the highest in peninsular Malaysia in 2006 (Ministry Of Health Malaysia, 2006).

Fig 1. The percentage for ten cancers that is highest in peninsular Malaysia in 2006 Source: Ministry Of Health Malaysia, 2006

In Peninsular Malaysia, as much as 21,773 cases of breast cancer have been diagnoses among Malaysian population in year 2006. These cases of breast cancer were registered in National Cancer Registry in Malaysia. 9,974 cases in men and 11,799 cases among the women were recorded. Five cancers that normally reported among the population in peninsular Malaysia in 2006 are breast, colorectal, lung, cervix and nasopharynx cancer. The abundance of data which come from various sources may hinder the retrieving process of useful knowledge. Due to that reason, ontology approach in data integration has attracted the attention due to its ability in solving various types of heterogeneous problems. Ontology enhanced the communication between human and machine by formalizing the word meanings through related concepts (Using et. al, 2010). In this study, ontology was uses to integrate the breast cancer dataset that come from different data sources. In general, ontology is used with well-defined term scheme to resolve the semantic problems (Buccella et. al, 2003; Wache et. al. 2001). The main purpose of ontology usage in this study was to integrate the cancer data from different sources into a single database and resolve the terminological difference problem of data attribute.

II. OVERVIEW OF ONTOLOGY

Ontology is defined as formalizing the word meanings through related concepts for a better communication between human and machine (Using, *et. al*, 2010). Ontology has two important components, namely entity and relationship, which need to be stated to create ontology. Generally, the structure of ontology is in a hierarchy shape that is formed by the relationship between class and relation, from general to more specific (Guangfei, *et. al.*, 2007). According to Nimmagadda *et. al*, (2005), ontology will integrate the data from different sources to store in a database. Figure 2 shows the hierarchy structure of ontology derived by integrating the data with similar characteristic.

Fig 2. Ontology Structure

Table I shows the development steps of ontology that was carried out by past researchers. There were no specific steps for developing ontology. Various development ontology steps have been introduced by researchers such as Guangfei, *et. al*, 2007; Natalya and Deborah, 2011; Bermejo, 2007; Xiufen and Yabin, 2011.

TABLE I. ONTOLOGY DEVELOPMENT STEP

Researcher	Development step
Rajpathak and	Pre-development phase
Chougule	 Ontology specification document
(2011)	 Determination of data and knowledge
	sources
	✓ Knowledge acquisition
	development phase
	✓ semantic structure
	\checkmark ontology formalization
	✓ ontology validation
	post-development phases
	\checkmark ontology documentation
D '	ontology maintenance and update
Bermejo	• Determine the domain and the scope or purpose
(2007)	of your ontology
	 Know your sources: documents, experts and
	existing ontologies
	Build the ontology
	✓ Enumerate important terms
	✓ Define concept taxonomies
	\checkmark Define relations, attributes and
	instances
	 Define axioms, rules and functions
Leung et. al,	Preparation,
(2011)	\checkmark identify purpose, scope, domain
(2011)	expert
	*
	• Analysis,
	✓ conceptualization
	✓ categorize similar key
	 identify linkage points
	✓ build a basic ontology
	✓ integrate knowledge modules into
	one ontologies
	• Design,
	✓ build knowledge module for used
	category
	✓ assemble all unused key terms back
	to the ontology
	Implementation
	✓ coding
	Maintenance
	✓ usability testing, add new knowledge
Buccella et. al.	 building the shared vocabulary
(2003)	• building the shared vocabulary \checkmark analysis of information sources,
(2003)	
	 ✓ search for terms (or primitives) ✓ defining the global ontology
	building local ontologies
	✓ analysis of information source
	✓ defining the local ontologies
	 defining mappings
Natalya and	Determine the domain and scope of the ontology
Deborah	Consider reusing existing ontologies
(2011)	• Enumerate important terms in the ontology
	 Define the classes and the class hierarchy
	 Define the properties of classes—slots
	 Define the properties of classes—slots Define the facets of the slots
	Create instances
Uschold and	Identify purpose

_	Devit din e di e contre la con			
•	Building the ontology			
	 Ontology capture 			
	✓ Coding			
	 Integrating existing ontologies 			
•	Evaluation			
•	Documentation			
•	Construction of global ontology			
	✓ Identify field of ontology			
	✓ Extract term of the field			
	✓ Define global ontology by identify			
	class hierarchy, class attribute and			
	relationship between classes			
•	Construction of local ontology			
•	Mapping between global ontology and local			
	ontology			
	✓ Concept mapping			
	✓ Attribute mapping			
	✓ Role mapping			
•	Mapping between local ontology and data			
	source			
	✓ Mapping between concept of local			
	ontology and the relational database			
	✓ Mapping between attribute of local			
	ontology and the relational database			
	✓ Mapping between role of local			
	ontology and the relational database			
	•			

III. ONTOLOGY INTEGRATION APPROACH

There are three methods proposed to develop ontology based data integration as stated by Cruz and Xiao, (2005); Gagnon, (2007); Xiufen and Yabin (2011); and Wache *et. al*, (2001), which are single ontology method, multi-ontology method and hybrid ontology method. Figure 3 presents those three methods of ontology based integration.

Fig 3. Ontology based integration method

Single ontology is using a global ontology which related to all data sources. The development of single ontology is simple, however, single ontology only suitable to be used if the view of data sources are almost the same. Besides, the adding and removing a data source will affect the global ontology.

Every data sources in multiple ontology approach have its own local ontology. Therefore, the adding and removing a data source can be done easily without affect to others ontology. Even so, the semantic problems may occur due to lack of common vocabulary.

Hybrid ontology approach overcomes the weaknesses found in previous approaches and retains the advantages. Hybrid ontology develops local ontology for each data source and consequently develops the global ontology using common terms found in the domain. The use of common vocabulary makes the comparison between local ontology become simple and solved semantic problems. Moreover, it's easy to add or remove the data sources.

IV. METHODOLOGY FOR ONTOLOGY DEVELOPMENT

This study refers to development approach defined by Xiufen and Yabin, 2011, because the development steps are suitable for develop breast cancer ontology. In addition, the development of hybrid ontology in their study shows with clearer step compared to others studies.

The ontology development steps for this study are discussed below. According to figure 4, methodology for ontology development in this study can be divided into three phase which is preparation, hybrid ontology process and development of ontology. First phase for this study is preparation which is domain and scope of ontology need to determine. All the related information need to be identified such as the data, user and software that will use in the study. Besides, domain knowledge needs to be identified whether from documentation, expert and existing ontology. This is important to make an accurate ontology. The domain knowledge for this study is getting from several ways such as domain expert who is a medical officer and documentation taken from article, journal and websites.

The next step is ontology development, which we will use hybrid ontology approach to develop breast cancer ontology. The steps to build ontology by using hybrid ontology approach are discussed below.

i. Development of global ontology

Global ontology is built by identifying public terms and vocabulary in the breast cancer domain. The identified terms is used to define the concept and attribute of global ontology.

- ii. Development of local ontology Local ontology is a semantic description of the data source. Each source of data has its own ontology.
- Mapping between global ontology and local ontology Ontology mapping between the global ontology and local ontology is divided into three part namely concept mapping attribute mapping and role mapping.
- iv. Mapping between local ontology and data source There are three steps that must be taken to do the mapping of local ontology and data source. The first step is to establish the mapping concept between local ontology and data source. Meanwhile, the second step is mapping between attribute of local

ontology and attribute names in the dataset. Finally, the role mapping between local ontology and data source will be done.

The last phase is development of ontology using protégé 4.2 and OWL language. Protégé is chosen because protégé is a free, provides a user with a suite of tools to construct domain models with ontology. It also supports the creation and visualization of ontology.

Fig 4. Ontology development steps

V. RESULT

This study uses Wisconsin Breast Cancer Dataset to develop breast cancer ontology. Breast cancer ontology will be implemented using OWL language by protégé 4.2 software. Breast cancer ontology is developed to give an effective of sharing knowledge, increase data quality, facilitate domain understanding and provide knowledge for the domain.

Domain knowledge is important to build an accurate ontology and is needed to get a deeper knowledge of the domain. The domain knowledge for this study is getting from domain expert who is used for ontology development purpose by knowing and understand the term of breast cancer used frequently in the domain and the documentation which is very helpful to understand the literature of the domain. The sources of documentation can be getting from website, journal and medical article. By using this way, we can identify the terms that can be used in the study. In this study, the concept will be represented with rectangle shape, attribute represented with oval shape. Next, fine arrows are used to show the relationship between concepts and attributes, which, the relationship used in this study is 'has a' and the bold arrow shows the relationship between concepts and concepts. Figure 5 show the example of concept, attribute and relationship used.

Fig 5. The representation of concept, attribute and relationship

Next, global ontology will be developed. There are two steps to build global ontology which is identify the terms and use the identified terms to define global ontology. The identified term will be used to define concept and attribute for global ontology. Figure 6 show global ontology of breast cancer.

Fig 6. Global Ontology

According to Wolberg, et. al, (1995) and Gouda, et. al, (2012), the patients will diagnosis using fine needle aspirate (FNA). The digitized image of FNA diagnosis is taken by two method, namely, computer analysis and microscopic. Computer analysis readings are computed by detailed characteristic of the size, texture and form of cell nuclei. The term included in computer analysis is Diagnosis, Radius, Texture. Perimeter, Area, Smoothness, Compactness, and Fractal Concavity, Concave Points, Symmetry, Dimension. Meanwhile, microscopic readings are based on the features of cancer cell which the attribute in microscopic is Clump Thickness, Uniformity of Cell Size, Uniformity of Cell Shape, Marginal Adhesion Single Epithelial Cell Size, Bare Nuclei, Bland Chromatin, Normal Nucleoli, Mitoses, and

Class. With the information gathered, the concept and attribute for global ontology is identified.

Local ontology is the semantic explanation for data sources. Each data source will have they own ontology. The name of data sources will be the concept, meanwhile the attribute in the data sources is defined as class attribute. Figure 7 and Figure 8 show local ontology developed for each dataset.

Fig 7. Local Ontology Dataset 1

Dataset2:

{FNA (Sample code number, Clump Thickness, Uniformity of Cell Size, Uniformity of Cell Shape, Marginal Adhesion Single Epithelial Cell Size, Bare Nuclei, Bland Chromatin, Normal Nucleoli, Mitoses, Class)}

Fig 8. Local Ontology Dataset 2

Mapping between global ontology and local ontology will be divided by three namely concept mapping, attribute mapping and role mapping. Concept mapping will be mapping the concept in local ontology to global ontology. Meanwhile, attribute mapping will be mapping the attribute in local ontology to global ontology. Role mapping is used to combine the concept in the local ontology with the global ontology by mapping the role in the local ontology to global ontology. Table II show the mapping rules from local ontology 1 to global ontology and Table III shows mapping rules from local ontology 2 to global ontology.

TABLE II. MAPPING RULES FROM LOCAL ONTOLOGY 1 TO GLOBAL ONTOLOGY

Rule	Rule
Name	
R1	$Diagnosis \rightarrow Diagnosis$
R2	Radius \rightarrow has.FNA.hasComputerAnalysis.hasRadius
R3	$Class \rightarrow has.FNA.hasComputerAnalysis.Class$
R4	Texture \rightarrow has.FNA.hasComputerAnalysis.hasTexture
R5	Perimeter → has.FNA.hasComputerAnalysis.hasPerimeter
R6	Area → has.FNA.hasComputerAnalysis.hasArea
R7	$Compactness \rightarrow$
	has.FNA.hasComputerAnalysis.hasCompactness
R8	Smoothness \rightarrow has.FNA.hasComputerAnalysis y.hasSmoothness
R9	Concavity \rightarrow has.FNA.hasComputerAnalysis.hasConcavity
R10	Concave Point \rightarrow
	has.FNA.hasComputerAnalysis.hasConcavePoint
R11	Symmetry \rightarrow has.FNA.hasComputerAnalysis.hasSymmetry
R12	Fractal Dimension \rightarrow has.FNA.hasComputerAnalysis.
	hasFractalDimension
R13	hasDiagnosis → hasDiagnosis

TABLE III. MAPPING RULES FROM LOCAL ONTOLOGY 2 TO GLOBAL ONTOLOGY

Rule	Rule
Name	
R1	$FNA \rightarrow FNA$
R2	Clump thickness \rightarrow hasMicroscopic.hasClumpthickness
R3	Uniformity of Cell Size \rightarrow
	hasMicroscopic.hasUniformityofCellSize
R4	Uniformity of Cell Shape \rightarrow
	hasMicroscopic.hasUniformityofCellShape
R5	Marginal Adhesion → hasMicroscopic.hasMarginalAdhesion
R6	Single Epithelial Cell Size \rightarrow
	hasMicroscopic.hasSingleEpithelialCellSize
R7	Bare Nuclei → hasMicroscopic.hasBareNuclei
R8	Bland Chromatin → hasMicroscopic.hasBlandChromatin
R9	Normal Nucleoli → hasMicroscopic.hasNormalNucleoli
R10	Mitoses \rightarrow hasMicroscopic.hasMitoses
R11	$Class \rightarrow hasMicroscopic.hasClass$
R12	$hasFNA \rightarrow hasDiagnosis.hasFNA$

There were three steps that need to use to establish the mapping. The first step is mapping the concept with the data source which is the name of the data source used. Meanwhile, the second step is to map the attribute between the local ontology and the name of attribute in the data source. Lastly, the role in local ontology will be mapping with the primary key of the data. Table IV show the mapping rules from Data source 1 to local ontology and Table V shows mapping rules from Data source 2 to local ontology.

TABLE IV. MAPPING RULES FROM DATA SOURCE 1 TO LOCAL ONTOLOGY

Rule Name	Rule
R1	Patient \rightarrow Patient
R2	Diagnosis → Diagnosis
R3	Patient.PatientID \rightarrow PatientID
R4	$Diagnosis.Class \rightarrow Class$
R5	Diagnosis.Texture \rightarrow Texture
R6	Diagnosis.Perimeter \rightarrow Perimeter
R7	Diagnosis.Area → Area
R8	Diagnosis.Compactness → Compactness
R9	$Diagnosis.Smoothness \rightarrow Smoothness$
R10	Diagnosis.Concavity \rightarrow Concavity
R11	Diagnosis.ConcavePoint → Concave Point
R12	Diagnosis.Symmetry \rightarrow Symmetry
R13	Diagnosis.FractalDimension → Fractal Dimension
R14	Diagnosis.Radius \rightarrow Radius
R15	$<$ Patient.PatientID $> \rightarrow$ hasDiagnosis

TABLE V. MAPPING RULES FROM DATA SOURCE 2 TO LOCAL ONTOLOGY

Rule Name	Rule
R1	Patient \rightarrow Patient
R2	$FNA \rightarrow FNA$
R3	Patient.Samplecodenumber \rightarrow Sample code number
R4	FNA.ClumpThickness → Clump Thickness
R5	FNA.UniformityofCellSize → Uniformity of Cell Size
R6	FNA.UniformityofCellShape → Uniformity of Cell Shape
R7	FNA.MarginalAdhesion → Marginal Adhesion
R8	FNA.SingleEpithelialCellSize → Single Epithelial Cell Size
R9	FNA.BareNuclei → Bare Nuclei
R10	$FNA.BlandChromatin \rightarrow BlandChromatin$
R11	FNA.NormalNucleoli → Normal Nucleoli
R12	$FNA.Mitoses \rightarrow Mitoses$
R13	$FNA.Class \rightarrow Class$
R14	$<$ Patient.Samplecodenumber> \rightarrow hasFNA

Next, global ontology developed by using software protégé 4.2 with OWL as language. Protégé is used in this research because it's supports the creation and visualization of ontology in various representation formats. Protégé also enables users to build ontology for the Semantic Web. We must define the relation of class in the tree structure, In order to build the ontology file, which mainly refers to the hierarchical relations that can be represented the word "subClassof". Figure 9 and figure 10 respectively show OWL class in a hierarchical fashion for breast cancer ontology and the visualization for the developed ontology.

Fig 9. OWL class for breast cancer ontology

Fig 10. Visualization for the developed ontology

Ontology metrics is a representation of an important approach in ontology evaluation. Ontology metrics is a summary of the ontology developed to verify and state statistics on the number of classes, relationships, attributes, instances, objects and features for developed ontology (*National Center for Biomedical Ontology*, 2012). By evaluating the ontology, we can identify the part which need more care and may cause the problem. Protégé is an important tool in evaluating the ontology (Garcia, J. *et. al*, 2010). Figure 11 shows ontology metrics of breast cancer ontology in this study.

Netrics			
Axiom	117		
_ogical axiom count	77		
Class count	28		
Object property count	12		
Data property count	0		
ndividual count	0		
DL expressivity	ALHI+		
	27		
SubClassOf axioms count	27		
SubClassOf axioms count EquivalentClasses axioms count			
Class axioms SubClassOf axioms count		_	
	0		

Fig 11. Ontology metrics

VI. DISCUSSION

Ontology development method introduced by Xiufen and Yabin, 2011, is referred since the development step is clearer and suitable to use in this study. However, ontology modeling in the study had some differences with ontology introduced in the study Xiufen and Yabin, 2011. There six criteria that has been identified which are development phase, ontology approach, detail of introduced ontology, ontology evaluation and ontology implementation. As stated in table VI, this study covers all of the ontology development phases which are predevelopment, development and post-development ontology. Thus, development steps done are more systematic and organized which make ontology development proses become more effective and efficient. Hybrid ontology approach has all the advantage of single ontology and multi-ontology approach and overcome their shortcoming. The changes in local ontology will not affecting global ontology. In addition, hybrid ontology new sources can easily be added without the need of modification in the mappings. Data integration based hybrid ontology approach can give an effective of sharing knowledge, increase data quality, facilitate domain understanding and provide knowledge for the domain.

	Development phase		Approach Detail of		Data	Evaluation	Implementation	
	Pre	Development	Post		methodology			-
Fatimatufaridah	\checkmark		\checkmark	Hybrid ontology	A lot	Dataset and website	Ontology metrics, domain expert, reasoner and application	Protégé 4.2 and OWL
Rajpathak and Chougule (2011)	\checkmark	\checkmark		Single ontology	Moderate	dataset	Empirical assessment and application	Protégé-2000, OWL and RDF
Bermejo (2007)	χ	\checkmark	χ	Single ontology	A lot	General terms	Check the class hierarchy and class definitions	-
Leung et. al, (2011)			V	Integrate existing ontology	Moderate	-	Application, query and domain expert	Protégé, RDF and OWL
Buccella et. al. (203)	χ	\checkmark	χ	Hybrid ontology	A little	General terms	-	-
Natalya and Deborah (2011)	χ	\checkmark	χ	Single ontology	A lot	General terms	-	Protégé-2000
Uschold and King (1995)	χ	\checkmark	χ	Single ontology	A little	-	Specifications, queries and applications	KSL ontology editor
Xiufen and Yabin (2011)	χ	\checkmark	χ	Hybrid ontology	A lot	Dataset	Searching platform	-
Wang and Ye (2009)	χ	V	χ	Hybrid	A little	-	Query	OWL

TABLE VI. BENCHN	MARK OF ONTO	LOGY DEVELOP	MENT METHOD
	MARKE OF OTTO		

VII. CONCLUSION

The contribution of this study can be seen in methods of ontology development. Although there some difference from study by Xiufen and Yabin, (2011), developed ontology in this study are able to give a better understanding of the data as well as solve semantic problems. In addition, ontology development steps introduced in this study is more complete and organized by having a clear development which is predevelopment, development and post-development. Method of ontology development done in this study is simple and systematic. This study has successfully solved the semantic heterogeneous problems by using hybrid ontology approach for data integration as well as gives a better understanding of the domain. Next, mapping file will be done to map the database to the ontology format using an open source platform for accessing database as virtual read only RDF graph (D2RQ).

ACKNOWLEDGMENT

This material is based upon work supported by Research University Grant (RUG), Universiti Teknologi Malaysia under Vote No. Q.J130000.7128.03J31 and Ministry of Higher Education (MOHE). Any opinions, findings, and conclusions or recommendations expressed in this material are those from the authors and do not necessarily reflect the views of the Universiti Teknologi Malaysia.

REFERENCES

- [1]. Bermejo J.,(2007), A Simplified Guide to Create an Ontology. Madrid University
- [2]. Buccella, A., Cechich, A., Cechich, R. dan Brisaboa, N. R. (2003). An Ontology Approach to Data Integration. *Journal of Computer Science and Technology*. Vol (3). Pp. 62–68.
- [3]. Cruz, I. F. dan Xiao, H. (2005). The Role of Ontologies in Data Integration. *Journal Of Engineering Intelligent Systems*. V(13). 245-252.
- [4]. Gagnon, M.; (2007) "Ontology-based integration of data sources," *International Conference on Information Fusion*, 2007 10th, vol., no., pp.1-8, 9-12 July 2007
- [5]. García, J., Jose, F., Peñalvo, G. and Therón, R. A Survey on Ontology Metrics. Proceedings *Third World Summit on the Knowledge Society, WSKS* 2010, Corfu, Greece. Springer Berlin Heidelberg. pp22-27, 22-24September 2010
- [6]. Gouda I. Salama, M.B.Abdelhalim, and Magdy Abdelghany Zeid. (2012). Breast Cancer Diagnosis on Three Different Datasets Using Multi-Classifiers. *International Journal of Computer and Information Technology* (2277 – 0764) Volume 01– Issue 01, September 2012
- [7]. Guangfei, Y., Shimada, K., Mabu, S., Hirasawa, K. dan Jinglu, H. (2007). A genetic network programming based method to mine generalized association rules with ontology. *Annual Conference in SICE*, 2007. pp. 2715-2722.
- [8]. Leung, N. K. Y., Lau, S. K., Fan, J. dan Tsang, N, (2011). An integration-oriented ontology development methodology to reuse existing ontologies in an ontology development process. *Proceedings of the* 13th International Conference on Information Integration and Web-based Applications and Services. Ho Chi Minh City, Vietnam. 174-181
- [9]. MedicineNet.com (2011) available at: http://www.medicinenet.com/script/main/hp.asp [accessed: Mac 2011]
- [10]. Ministry of Health Malaysia. (2006). Statistics-Data And Figure Peninsular Malaysia 2006. National Cancer Registry, Malaysia. 1-112.

- [11]. Natalya, F. N. dan Deborah, L. M. (2011). Ontology Development 101: A Guide to Creating Your First Ontology http://protege.stanford.edu/publications/ontology_dev elopment/ontology 101-noy-mcguinness.html. [3 Mac 2011].
- [12]. National Center for Biomedical Ontology. Available at: http://bioportal.bioontology.org/. [Accessed: February 2012].
- [13]. Nimmagadda, S. L., Dreher, H., dan Rudra, A. (2005). Ontology of Western Australian petroleum data for effective data warehouse design and data mining, 3rd IEEE International Conference on in Industrial Informatics, 2005. INDIN '05. 2005, pp. 584-592.
- [14]. Rajpathak, D dan Chougule, R. (2011): A generic ontology development framework for data integration and decision support in a distributed environment, *International Journal of Computer Integrated Manufacturing*, 24:2, 154-170.
- [15]. Uschold, M. dan King, M. (1995).Towards a Methodology for Building Ontologies. Workshop on Basic Ontological Issue in Knowledge Sharing. Conjunction with IJCAI-95
- [16]. Using, S. N. M., Ahamd, R. dan Taib, S. M. (2010). Ontology of programming resources for semantic searching of programming related materials on the Web. *International Symposium in Information Technology (ITSim)*, 2010 pp. 698-703.
- [17]. Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H. dan Hübner, S. (2001). Ontology-Based Integration of Information -A Survey of Existing Approaches. Pp 108—117.
- [18]. Wang, H. dan Ye, Z. (2009) Building Multi-Level Data Warehouse Based on Hybrid-Ontology, *International Symposium on Computer Network and Multimedia Technology*, 2009. CNMT 2009., vol., no., pp.1,4, 18-20 Jan. 2009
- [19]. Wolberg WH, Street WN, Heisey DM, Mangasarian OL. (1995). Computerized breast cancer diagnosis and prognosis from fine-needle aspirates. *Arch Surg.* 1995 May;130(5):511-6.
- [20]. Xiufen; C. dan Yabin; X. (2011), "Computer-based patient record data integration method based on ontology," *International Symposium on IT in Medicine and Education (ITME)*, vol.2, no., pp.551-554, 9-11 Dec. 2011