
International Journal of Innovative Computing 6(2) 1-7

International Journal
of

Innovative Computing

Journal Homepage: http://se.fsksm.utm.my/ijic/index.php/ijic

1

BROAD PHASE COLLISION DETECTION USING

GRAPHICS PROCESSING UNIT

Norhaida Mohd Suaib
UTM ViCubeLab, Faculty of Computing,

Universiti Teknologi Malaysia,
UTM Skudai, Johor,

Malaysia
haida@utm.my

Fawwaz Mohd Nasir
Faculty of Computing, Universiti Teknologi Malaysia,

UTM Skudai, Johor,
Malaysia

Abstract— Collision detection is a very important component
in computer graphics applications. However, due to its high
algorithm complexity, collision detection usually forms a
bottleneck in many of these applications causing the simulation
performance to deteriorate. Earlier algorithms for collision
detection are sequential in nature. The multi-core processor
technology is seen as an opportunity to reduce and eliminate this
bottleneck by parallelizing the collision detection algorithm.
Therefore, this paper implements the sphere bounding volume in
the broad phase collision detection using the sequential and
parallel approach separately, in order to identify the simulation
performance differences between both approaches. The
algorithm used to implement the broad phase collision detection
involved the all-pair test where it is based on the comparison of
the objects’ bounding volume to determine if collision occurs. As
an extension, this paper utilizes the graphics processing unit to
implement the parallel approach. The implementation of the
broad phase parallel collision detection shows improved frame
rate for larger number of objects involved; up to 1.2x faster
compared to the sequential implementation.

Keywords — Collision detection, broad phase, bounding volume,
parallel computing, GPU programming.

I. INTRODUCTION
Collision detection for computer graphics applications

refers to the problem of determining whether there are any
intersections between virtual objects [1] and to report any
collisions [2] so that they could be handled accordingly. It is an
important component in computer simulated environment to
ensure that virtual objects behave in a physically-plausible
manner. Without collision detection, objects can penetrate

each other and can lead to physically incorrect behaviour. In
order to efficiently implement collision detection, a two-phased
collision detection approach is frequently adopted which
comprises of the broad phase followed by the narrow phase
collision tests [1, 3-8]. The first phase which is the broad phase
collision detection is responsible for the quick and efficient
removal of the object pairs that are not in collision [5]. The
narrow phase on the other hand, performs tests in more detail
and is performed on objects identified as having the potential to
collide in the broad phase level. Collision detection is one of
the bottlenecks in real time rendering loop [1, 9, 10]. A
conventional way to accelerate collisions tests during broad-
phase collision detection is based on bounding volumes
approach [1, 11].

Hence, this paper focuses on the implementation of the
broad phase collision detection using the all-pair test. Sphere
bounding volume was used to perform collision tests. Graphics
processing unit (GPU) programming using the Compute
Unified Device Architecture (CUDA) was applied in this
research to determine the differences between the sequential
and parallel algorithm executions in the implementation of the
collision detection process.

This paper is organized into six different sections. The first
serves a brief introduction to the topic. The second section
discusses on the background of this research. This is followed
by the research framework in the third section. Experimental
layout is discussed in the fourth section. The results and
discussions are presented in fifth section and the final section
concludes this paper.

Suaib, N.M & Nasir, F.M./ IJIC Vol. 6:2 (2016) 1-7

2

II. BACKGROUND OF THE RESEARCH
In a dynamic environment involving multiple interacting

objects, collision detection is known for its computationally
intensive process. Different approaches have been proposed to
improve the process, for example by culling away non-
interacting objects during the broad-phase collision detection
level or the use of specific data structure such as the bounding
volume hierarchy (BVH) or space decomposition.

A two-phase collision detection approach is usually
employed in a dynamic simulation involving n-body objects to
reduce the total number of pairwise collision tests. This
involves the broad-phase level and narrow-phase collision
detection level. More than often, the 3D collision tests are
reduced into suitable parallel problems; for example by
projecting the 3D bounding volume information onto the X, Y
and Z-axis respectively and feeding the reduced 1D collision
tests into parallel threads. The next sub-section will discuss
related issues regarding collision detection and its adaptation
into parallel implementation.

A. Traditional Collision Detection Issues
Collision detection refers to the process of determining if

two objects collide with each other. It is a very important
component in computer graphics applications, especially in if it
involves dynamic objects. However, collision detection
remains as a fundamental problem since it forms a bottleneck
in many of these applications [1, 6, 10]. In order to ensure that
the application can run smoothly, various approaches has been
introduced to reduce the cost involved; particularly on collision
tests. One of them is the two-phase collision detection scheme
that was mentioned earlier. Different approaches can be
adopted during the broad-phase level; generally they fall under
either object-space approach, or image-space approach. The
bounding volume approach is one of the examples of object-
space approach and it can further be used to subdivide the
objects into a bounding volume hierarchy (BVH). This is
known as object decomposition. On the other hand, the whole
scene can also be decomposed into smaller 3D grids and this is
known as scene decomposition. An example of scene
decomposition is by using octree. Figure 1 shows the general
approaches that were mentioned here.

Fig. 1. Collision detection approaches.

Earlier algorithms for collision detection are sequential in
nature. They are designed for single core processor. One of
those sequential or traditional algorithms is the brute-force
algorithm. This algorithm tests every object for collision. It has
an algorithm complexity of O(n2). The next algorithm is the
sort and sweep algorithm. Although it is simple to implement,
it has an average complexity of O(n log n) and its worst case
complexity is O(n2). Spatial subdivision can also be used as
one of the algorithm in broad phase collision detection. This
algorithm has the same complexity as to the previous
mentioned algorithm where its average algorithm complexity is
O(n log n) with O(n2) being its worst case algorithm
complexity.

B. Hardware Development
Referring to Moore’s law, the chip performance would

double every 18 months [12]. This means that programs will
automatically run faster on newer processors. The design goal
for the processors in the late 1990’s and early 2000’s was to
increase the clock rate. This was accomplished by increasing
the number of transistors on the smaller chip. Unfortunately,
this approach quickly becomes unreliable - further increase in
the number of transistors causes the increase in power
dissipation of the processor chip beyond the capacity of
inexpensive cooling techniques. Therefore, opportunities for
improving the raw performance of individual processor has
become very limited because of this problem which is
commonly known as the power wall [13].

In order to continue delivering performance improvement
and due to cost constraints on the need for inexpensive cooling
techniques, the multi-core processors were introduced. A
multi-core processor can run more operations and system
processers at the same time, compared to a single-core
processor. It can complete a complex task in a short period of
time. The number of cores is likely to increase at the rate
corresponding to the Moore’s law [14]. However, multiple
core processors can only be beneficial for problems that were
carefully adapted for parallel, core-limited tasks [15]. This
means that programs will not get any faster unless the ever-
increasing number of cores is effectively utilized. Therefore,
software developers are trying to make use of this multi-core
technology to improve the performance of their application.

Modern GPUs offer higher peak throughput compared to
the central processing units (CPUs) [14]. This has been proven
by many organizations where the developers have achieved an
increase in performance when using the GPU to perform
computations traditionally handled by the CPU. Therefore, by
using the GPU to implement the algorithm for the broad phase
approach of the collision detection, it is expected that there will
be a performance improvement since CPUs has lower
throughput compared to the GPUs. Besides, using the concept
of parallelism can also improve the algorithm performance
compared to using the traditional sequential approach.

C. Adaptation of Parallel Collision Detection
Collision detection is one of the bottlenecks of the real time

rendering loop due to its algorithm complexity. This will

Suaib, N.M & Nasir, F.M./ IJIC Vol. 6:2 (2016) 1-7

3

eventually lower the frames per second (FPS) since it affects
the overall performance of the application. The limited ability
in improving individual processor since its interception with
the power wall has resulted in the introduction of the multi-
core processors. Earlier algorithms were mostly implemented
on the CPU, and later involving the use of GPU without direct
GPU manipulation [16]. Sequential pairwise checks that are
traditionally done between a large number of interacting
objects usually consume huge amount of resources, but the
nature of pairwise collision checks is readily adopted for
parallel implementation [17]. Parallel collision detection
implementation were investigated along with the introduction
of the multi-core CPU and later extended to GPU
implementation.

Parallel BVH construction and computations were normally
used for collision detection between rigid and deformable
objects [14, 18, 19], rendering-related processes such as ray-
tracing [10, 20] and visibility culling. Parallel broad-phase CD
was also investigated for collision checking as part of
sampling-based path planning [21, 22]. A framework for the
fast construction of surface area heuristic (SAH)-based BVHs
that is particularly designed for the Intel multi-core architecture
for ray-tracing purposes has been proposed by [20]. In this
case, CPU implementation was chosen since it dealt with
control-intensive tasks such as BVH construction rather than
compute-intensive tasks.

Multiple core GPUs have been exploited for parallel
collision detection and distance computation for rigid and
deformable objects [19], bounding volume hierarchies (BVH)
construction and related computation [23]. It offers many
advantages especially if the scene involves a large number of
dynamic and interacting objects where collision culling based
on GPU helps to reduce collision tests [24, 25].

As discussed above, the choice of either to use parallel
implementation on the CPU and GPU has been explored by a
number of researchers. It was mentioned that the parallel CPU
implementations were more suitable for control-intensive tasks
while the parallel GPU implementations were more suitable for
compute-intensive tasks [26]. GPU is used for compute-
intensive tasks since it is said to have higher throughput
compared to the CPU and higher speed for real-time
applications (in terms of frames per seconds (FPS)).
Therefore, it is seen as an opportunity to utilize the both multi-
core CPU and GPU as can be seen from hybrid CPU/GPU
spatial subdivision collision detection technique [18] and
algorithm that is suitable for both multi-core CPU and many
core GPU [27].

III. RESEARCH FRAMEWORK
Figure 2 illustrates the research framework for the

implementation of the broad phase collision detection in
sequential computing. The algorithm used is the all-pair test
which is a brute force approach of collision detection. The all-
pair tests checks for collision between objects by testing
whether the objects bounding volume intersect with each other.

Fig. 2. Sequential approach research framework.

Bounding spheres were used throughout this research as the
objects’ bounding volume. 3D data files were used as input for
the 3D objects used in the research framework shown above.
Objects that have the potential to collide with each other are
paired up together, creating a list of object pairs. Each pair is
then tested for collisions. During collision test process, the
radius of bounding sphere pair is summed up together to check
for collision. An intersection (a collision) between a pair of
bounding sphere only occurs if the distance between the
spheres’ centre is less than the sum of the radius of both
spheres (refer to Figure 3 and Algorithm 1). By the end of the
collision testing, the output, which is the simulation
performance measured in FPS for the whole process is
calculated. Note that for this sequential computing approach,
the object pairs are tested one after another in a sequential
manner.

Fig. 3. Collision detection approaches.

Suaib, N.M & Nasir, F.M./ IJIC Vol. 6:2 (2016) 1-7

4

Algorithm 1 shows the broad phase collision detection
algorithm for sequential approach. The radius of bounding
sphere 1 and bounding sphere 2 is represented by r1 and r2
respectively. The distance between the spheres’ centre is
denoted by d.

Algorithm 1: Collision detection for sequential approach
1. Pair objects that have the potential to collide
2. Function to test paired objects for collision

2.1. Sum r1 and r2
2.2. Compute d
2.3. If d ≤ (r1 + r2) then return true
 Else return false

3. Compute FPS

Figure 4 represents the framework for conducting the

parallel computing on the broad phase collision detection. The
framework is quite similar to the framework for sequential
computation. The main difference is that instead of checking
for bounding spheres intersection sequentially, intersections are
checked concurrently. Meaning, the object pairs created in the
earlier step will be tested for collision in a parallel fashion by
delegating the job between several GPU threads or cores.

Fig. 4. Parallel approach research framework.

Figure 5 shows how the workload, which in our case is the
object pairs, is delegated in a CUDA capable NVIDIA GPU.
The workload is distributed by first specifying the number of
blocks and the number of threads per block needed to complete
the task. These numbers depend on the amount of object pairs
that will be tested for collision. CUDA will then distribute the

workload based on these specified numbers during the kernel
launch.

Fig. 5. Workload distribution.

The parallel broad-phase collision detection algorithm that
was used is shown as Algorithm 2. Note that r1 and r2 are
used to represent the radius of bounding sphere 1 and bounding
sphere 2. Notation d on the other hand, represents the distance
between the spheres’ centre. Also, notice that a CUDA kernel
is used in step 3 to distribute the workload. A kernel is a
function that executes for a certain number of times, in parallel,
depending on the number of blocks and threads specified
during the kernel call.

Algorithm 2: Collision detection for parallel approach
1. Pair objects that have the potential to collide
2. Compute required number of CUDA blocks and

threads
3. CUDA kernel to test paired objects for collision

3.1. Sum r1 and r2
3.2. Compute d
3.3. If d ≤ (r1 + r2) then return true
 Else return false

4. Compute FPS

Suaib, N.M & Nasir, F.M./ IJIC Vol. 6:2 (2016) 1-7

5

Performance comparisons between the sequential and
parallel approach were made based on the frame rates from
both computation. In computer graphics, frame rate refers to
the speed at which the image is refreshed. Usually frame rates
were measured in seconds (frames per second, FPS). The
higher the frame rate, the smoother the motion image being
displayed. A lower frame rate causes the motion image to look
choppy or jumpy. Therefore, in our case, parallel computing is
expected to produce a higher frame rate when compared to the
sequential approach.

The simulation used for experiments was written using C++
programming language and is developed using Microsoft
Visual Studio 2008 integrated development environment
(IDE). The Open Graphics Library (OpenGL) application
programming interface (API) was used to render the scene (see
Figure 6). NVIDIA CUDA Toolkit 5.5 was also used to allow
direct access to the GPU. Currently, the toolkit only supports
Visual C++ 9.0 compiler (part of Microsoft Visual Studio 2008
IDE) or later for programs written in C++ and developed in the
Microsoft Windows operating system. Apart from that, this
paper utilizes the NVIDIA GeForce G105M consumer
processor which is one of NVIDIA’s CUDA capable GPUs.

Fig. 6. The scene.

IV. EXPERIMENTAL LAYOUT
The experiment is conducted by adding different number of

spheres to the scene. The chosen set for the number of spheres
is 64, 128, 192, 256 and 320. Besides using different number of
spheres, different approaches were also used to conduct the
intersection test. The set of numbers mentioned was tested with
these approaches, which are the sequential and parallel
approaches. A set of 200 FPS readings is then recorded into a
text file by a user triggered event. Separate files are created to
record the readings for both the sequential and parallel
approaches. Average readings will be calculated based on
recorded data. This process is performed in order to increase
the precision of the FPS value. Higher FPS reading is preferred
since it supports real-time application. Figure 7 shows the
average FPS captured for both sequential and parallel broad-
phase collision detection.

Fig. 7. Frame rates (FPS values) for sequential and parallel approach.

V. RESULTS AND DISCUSSIONS
Table 1 shows the calculated average of the recorded real-

time FPS for both the sequential and the parallel approaches.
The effects of using different number of spheres were also
documented in the table. The number of spheres used is
actually a multiple of 16. In CUDA, the smallest executable
unit of parallelism is 32 threads, which is called a wrap [28].

TABLE I. AVERAGE FPS FOR DIFFERENT NUMBER OF SPHERES AND
APPROACHES

Number of
Spheres

Average FPS
Speed-up Sequential

Approach
Parallel
Approach

64 59.31 36.49 0.62

128 19.43 18.39 0.95

192 9.35 9.73 1.04

256 5.36 6.20 1.16

320 3.42 4.34 1.27

* average FPS and speed-up values were rounded up to second decimal

Fig. 8. Parallel approach speed-up.

The amount of speed-up gained in the parallel approach
when compared to the sequential approach was also calculated.
In parallel computing, speed-up refers to how much faster the

Suaib, N.M & Nasir, F.M./ IJIC Vol. 6:2 (2016) 1-7

6

parallel approach is compared to the sequential approach. It is
calculated by dividing the average FPS of the parallel approach
by the average FPS of the sequential approach. Notice that
from Table 1 shown above and Figure 8 on the next page, this
value increases as the number of spheres increases. This shows
that the parallel approach works better when there are higher
numbers of spheres. In other words, the GPU is at its best
performance if there are higher numbers of tasks to be
performed.

VI. CONCLUSION
This paper has investigated the implementation of the broad

phase collision detection in both sequential and parallel
approaches. As mentioned earlier, the purpose of this paper
was to investigate the difference between executing the broad
phase collision detection algorithm in the sequential and
parallel approaches.

Since the processor architecture hit the power wall, the
multi-core processors were introduced to continue delivering
performance improvement. Therefore, in order for the
applications to run faster, they need to utilize the multi-core
technology. The performance of the computer graphics
applications, especially that involves collision detection can be
improved since collision detection forms a bottleneck in many
of these applications.

Generally, from the outcome of the conducted test, the
parallel approach works better than the sequential approach
when there are higher amount of work that needs to be
completed. Also, the amount of speed-up correlates to the
amount of spheres added to the scene.

ACKNOWLEDGMENT
We would like to express our special thanks to Universiti

Teknologi Malaysia (UTM) and Ministry of Higher Education
(MOHE) for related support and arrangements. This research
was partly supported by RUG research grant 16H01.

REFERENCES
[1] Suaib, N.M., Bade, A., and Mohamad, D. 2013. ‘Hybrid

Collision Culling by Bounding Volumes Manipulation in
Massive Rigid Body Simulation’, TELKOMNIKA, 11, (6), pp.
8

[2] Bade, A., Suaib, N.M., and Daman, D. 2007. ‘Collision
detection in virtual environment’, in Daman, D., Sunar, M.S.,
and Zamri, M.N. (Eds.): ‘Advances in Computer Graphics &
Virtual Environment’ (Penerbit UTM Press), pp. 103 - 122

[3] Suaib, N.M., Bade, A., and Daman, D. 2008. ‘Collision
Detection: A Survey Of Techniques And Applications’, in
Daman, D., Bade, A., and Suaib, N.M. (Eds.): ‘Collision
Detection for Real-Time Graphics: Series of Techniques’
Penerbit UTM Press, pp. 1-16

[4] Grand, S.L. 2008. ‘Broad-Phase Collision Detection with
CUDA’, in Nguyen, H. (Ed.): ‘GPU Gems 3’. Addison-Wesley.

[5] Avril, Q., Gouranton, V., and Arnaldi, B. 2010. ‘A Broad Phase
Collision Detection Algorithm Adapted to Multi-cores
Architectures’. Proc. Virtual Reality International Conference
(VRIC 2010), Laval, 7 – 9 April 2010, pp. Pages

[6] Weller, R. 2013. ‘New Geometric Data Structures for
Collision Detection and Haptics’. Springer International
Publishing

[7] Kockara, S., Halic, T., Iqbal, K., Bayrak, C., and Rowe, R.:
‘Collision detection: A survey’, in Editor (Ed.)^(Eds.): ‘Book
Collision detection: A survey’ (2007, edn.), pp. 4046-4051

[8] Hubbard, P.M. 1995. ‘Collision detection for interactive
graphics applications’. IEEE Transactions on Visualization and
Computer Graphics, 1 (3), 218-230.

[9] Suaib, N.M., Bade, A., and Mohamad, D. 2015. ‘Sphere-
encapsulated Oriented Discrete Orientation Polytopes (S-Dop)
Collision Culling for Multi-, Rigid Body Simulation’, Jurnal
Teknologi (Sciences & Engineering), 75, (2), pp. 7

[10] Lehericey, F., Gouranton, V., and Arnaldi, B. 2013. ‘Ray-
Traced Collision Detection : Interpenetration Control and
Multi-GPU Performance’. Proc. 5th Joint Virtual Reality
Conference of EuroVR - EGVE, Paris. pp. Pages

[11] Weller, R., Mainzer, D., Srinivas, A., Teschner, M., and
Zachmann, G. 2014. ‘Massively Parallel Batch Neural Gas for
Bounding Volume Hierarchy Construction’. Proc. 11th
Workshop on Virtual Reality Interaction and Physical
Simulation VRIPHYS, Germany, 24 - 25 September 2014 2014
pp. Pages

[12] Stallings, W. 2010. ‘Computer Organization and Architecture:
Designing for Performance’. Pearson, 8/E ed.

[13] Padua, D. 2011. ‘Encyclopedia of Parallel Computing’
Springer, 4/E ed.

[14] Tang, M., Manocha, D., Lin, J., and Tong, R. 2011. ‘Collision-
streams: fast GPU-based collision detection for deformable
models’. Proc. Symposium on Interactive 3D Graphics and
Games, San Francisco, California.

[15] Pase, D.M., and Eckl, M.A. 2006. ‘A Comparison of Single-
Core and Dual-Core Opteron Processor Performance for HPC’.
Proc. The 7th LCI Conference on High Performance Clustered
Computing, Oklahoma, May 1-4, 2006

[16] Vassilev, T.I. 2012. ‘Collision Detection for Cloth Simulation
using Ray-tracing on the GPU’, International Journal on
Information Technologies & Security, 4, (4), pp. 10

[17] Avril, Q., Gouranton, V., and Arnaldi, B. 2011. ‘Dynamic
adaptation of broad phase collision detection algorithms’, in
Editor (Ed.)^(Eds.): ‘Book Dynamic adaptation of broad phase
collision detection algorithms’. pp. 41-47

[18] Pabst, S., Koch, A., and Straßer, W. 2010. ‘Fast and Scalable
CPU/GPU Collision Detection for Rigid and Deformable
Surfaces’, Computer Graphics Forum, 29, (5), pp. 1605-1612

[19] Lauterbach, C., Mo, Q., and Manocha, D. 2010 ‘gProximity:
Hierarchical GPU-based Operations for Collision and Distance
Queries’, Computer Graphics Forum, 29, (2), pp. 419-428

[20] Wald, I., Woop, S., Benthin, C., Johnson, G.S., and Ernst, M.
2014. ‘Embree: a kernel framework for efficient CPU ray
tracing’, ACM Trans. Graph., 33, (4), pp. 1-8

[21] Geleri, F., Tosun, O., and Topcuoglu, H. 2013. ‘Parallelizing
Broad Phase Collision Detection Algorithms for Sampling
Based Path Planners’ in Parallel, Distributed and Network-
Based Processing (PDP), 2013 21st Euromicro International
Conference on, Feb. 27 2013-March 1 2013.

[22] Erbes, R., Mantel, A., Schömer, E., and Wolpert, N. 2013.
‘Parallel Collision Queries on the GPU’, in Keller, R., Kramer,
D., and Weiss, J.-P. (Eds.): ‘Facing the Multicore-Challenge
III’. Springer Berlin Heidelberg, pp. 84-95

Suaib, N.M & Nasir, F.M./ IJIC Vol. 6:2 (2016) 1-7

7

[23] Lauterbach, C., Garland, M., Sengupta, S., Luebke, D., and
Manocha, D. 2009. ‘Fast BVH Construction on GPUs’,
Computer Graphics Forum, 28, (2), pp. 375-384

[24] Liu, F., Harada, T., Lee, Y., and Kim, Y.J. 2010. ‘Real-time
collision culling of a million bodies on graphics processing
units’, ACM Trans. Graph., 29, (6), pp. 1-8

[25] Lo, S.-H., Lee, C.-R., Chung, I.-H., and Chung, Y.-C. 2013.
‘Optimizing Pairwise Box Intersection Checking on GPUs for
Large-Scale Simulations’, ACM Trans. Model. Comput.
Simul., 23, (3), pp. 1-22

[26] Wald, I. 2012. ‘Fast Construction of SAH BVHs on the Intel
Many Integrated Core (MIC) Architecture’, IEEE Transactions
on Visualization and Computer Graphics, 18, (1), pp. 47-57

[27] Zhang, X., and Kim, Y.J.: ‘Scalable Collision Detection Using
p-Partition Fronts on Many-Core Processors’, Visualization and
Computer Graphics, IEEE Transactions on, 2014, 20, (3), pp.
447-456

[28] Cheng, J., Grossman, M., and McKercher, T. 2014.
‘Professional CUDA C Programming’. John Wiley & Sons,
Inc.

	I. INTRODUCTION
	II. BACKGROUND OF THE RESEARCH
	A. Traditional Collision Detection Issues
	B. Hardware Development
	C. Adaptation of Parallel Collision Detection

	III. RESEARCH FRAMEWORK
	IV. EXPERIMENTAL LAYOUT
	V. RESULTS AND DISCUSSIONS
	VI. CONCLUSION
	Acknowledgment
	References

